
Generative AI
The key concepts, Developments and 
Challenges

Jakub M. Tomczak
Generative AI Group, TU/e (associate professor)
Amsterdam AI Solutions (founder)

1



Recent breakthroughs
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ChatGPT
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November 30, 2022
https://openai.com/blog/chatgpt



GPT-4
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March 14, 2023
https://openai.com/research/gpt-4



Imagen: Transformer Encoder + Diffusion model
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Saharia et al., NeurIPS 2022
"Photorealistic text-to-image diffusion models with deep language understanding"https://imagen.research.google/



Stable Diffusion
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Rombach et al., CVPR 2022
"High-resolution image synthesis with latent diffusion models"

Text2Image

Inpainting

Unconditional



Generative AI
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Modeling: Discriminative vs. Generative

oDiscriminative models: finding boundaries in the data space, p(y|x).

oGenerative models: explaining how the data was generated, p(x, y).
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Jebara, T. (2012). Springer Science & Business Media
“Machine learning: discriminative and generative (Vol. 755)”



Modeling: Discriminative vs. Generative

oDiscriminative models: finding boundaries in the data space, p(y|x).

oGenerative models: explaining how the data was generated, p(x, y).

oIn ML, many models are generative:

• Naive Bayes, Linear Discriminant Analysis

• Bayesian networks & Markov random fields

• Mixture Models, Latent Dirichlet Allocation, Factor Analysis, PCA

• Chinese restaurant process, Indian buffet process
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Jebara, T. (2012). Springer Science & Business Media
“Machine learning: discriminative and generative (Vol. 755)”



Generative = Understanding how data is generated
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Generative = Understanding how data is generated
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Generative = Understanding how data is generated
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Generative = Understanding how data is generated
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Pros and cons
Uncertainty quantification
Semi-supervised learning for free
High flexibility
Natural for multi-modal learning
Flexibility for domain adaptation
High complexity



Generative AI
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p(x, y) = p(y|x) p(x)



Generative AI
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p(x, y) = p(y|x) p(x)

Any (deep learning) predictor
Relatively easy



Generative AI
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p(x, y) = p(y|x) p(x)

Any (deep learning) predictor A deep probabilistic model

Relatively easy Challenging!



Generative AI
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Generative AI
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Generative AI
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Generative AI
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Generative AI and (spherical) cows
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High-dim data Latent variable models
Flow-based models

Autoregressive models Diffusion models
Energy-based models

Probabilistic circuits

GOAL:
p(x, y) or p(x)



A glance at non-standard 
applications of Generative AI
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Molecule generation with Diffusion models
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Hoogeboom et al., ICML 2022
“Equivariant Diffusion for Molecule Generation in 3D”



Molecule generation with Joint Transformers
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Izdebski et al., (work in progress) 2023
“De novo drug design with Joint Transformers”

• Trained on 15M SMILES strings 
(1.5M molecules) with >36M updates.

• Tasks:
• Molecule generation
• Property prediction
• De novo drug design

Generations



Medical imaging with Joint Diffusion Models

• Visual counterfactual explanations:
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Deja et al.,  ECML 2023
"Learning Data Representations with Joint Diffusion Models"



Challenges
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Challenges

• Trustworthiness

• Sustainable Generative AI

• Lean Language Models

• Low-energy (brain: ~0.5 kWh/day vs. 16xGPU: ~170 kWh/day)

• Low-precision

• Useful applications:

• From images to Life Sciences, Molecular Sciences, Ecology, …
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Challenges

• Trustworthiness

• Sustainable Generative AI

• Lean Language Models

• Low-energy consumption (brain: ~0.5 kWh/day vs. 16xGPU: ~170 kWh/day)

• Low-precision

• Useful applications:

• From benchmarks to Life Sciences, Molecular Sciences, Ecology, …
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Take-aways
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Take-aways

• Generative AI has shown that 
almost everything is possible!

• Many open research questions

• Sustainability!

• No killing robots (we are not there 
yet 😉😉) but think of regulations!

• Trustworthiness
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(Always remember about shameless self-promotion)



Thank you!
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Contact: jmk.tomczak@gmail.com 

Generative AI Group: https://generativeai-tue.github.io/             Amsterdam AI Solutions: https://amsterdamaisolutions.com/

mailto:jmk.tomczak@gmail.com
https://generativeai-tue.github.io/
https://amsterdamaisolutions.com/
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